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Abstract. In this paper we propose a new tumor growth model, based on 

the original model developed by Anderson-Chaplain to which we attached 
Ivancevic’s “butterfly” time attractor. The chaotic behavior provides a more 
realistic perspective on tumor growth, with uncertainties and uncontrollable long 
term stochastic effects. 
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1. Introduction 
 
Researchers are more and more expressing the idea that cancer is a 

genetic disease. The main cause of this diseases is an abnormal gene expression. 
The usual genetic diseases are caused by a single-gene mutation, whilst cancer 
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is the result of a multitude of such mutations. Consequently, it can be regarded 
as a group of diseases with identical biological features. Moreover, cancer acts 
as a particular structure, oscillating between order and chaos. Therefore, some 
types of cancer can show a regular behavior, while other types display chaotic 
biological evolutions.  

A series of resolution scales can be observed in cancer evolution, as 
follows (Kozusko and Bourdeau, 2007): 

i) Invasion. Tumoral invasion and metastasis are complex, dynamic, 
and multistage processes. According to literature, any type of tumor can invade 
surrounding tissues through complex dynamic processes. The first step consists 
in tumoral invasion through the basal cell membrane, followed by diffusion in 
the adjacent tissue. The second step is the aggression of tumor cells on blood 
vessels, followed by malign pathology. This is the earliest stage that can be 
clinically detected. Afterwards, the tumor evolves in the tissue and generates 
metastasis, more specifically destabilizing cell – cell and cell – matrix 
connections, as well as the obvious destruction of the matrix.   

ii) Extracellular matrix degeneration. The extracellular matrix (ECM) is 
composed of proteins such as collagen, elastin, laminin and fibronectin. The 
proteolytic enzymes are the ones responsible for extracellular matrix digestion. 
When the tumor invades, leading to metastasis, the ECM and connecting tissues 
are severely damaged. 

iii) Cell adhesion. In the case of tumor invasion, cell – cell and cell – 
matrix adhesions are affected. Cellular adhesion depends on the surrounding 
ECM through different types of molecules. 

iv) Angiogenesis. The constant growth of malign tumors, as well as 
metastasis evolution are the result of new blood vessels (angiogenesis). This 
process can be amplified by driving factors, in the case of tumor cells as well as 
in the case of stromal, angiostatin and endostatin cells. 

v) Metastasis formation in different tissues. Several organs and tissues, 
such as the liver, lungs or bones, are more susceptive to metastasis formation, 
while other show a higher degree of resistance (the kidneys, the heart). A series 
of factors are responsible for this phenomenon. These are mostly represented by 
manifestations of several characteristic molecules, responsible for cell adhesion 
in the vascular endothelium of organs that fixate moving tumor cells. In some 
cases, metastasis do not manifest for several years, and correspondingly patients 
do not show symptoms for a longer period. This is the case for metastasis 
influenced by a cell death coefficient equal or higher than the division 
coefficient, through apoptosis. Tumoral invasion of different tissues is the main 
cause of death for cancer patients. Both types of adhesion (cell – cell and cell – 
matrix) are very important for the invasion process.  

In this paper we propose a new tumor growth model, based on the 
original model developed by Anderson-Chaplain (the AC model) (Anderson et 
al., 2000) to which we attached Ivancevic’s “butterfly” time attractor (Ivancevic 
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et al., 2008). In this way, we believe that the chaotic behavior can provide a 
more realistic perspective on tumor growth, with uncertainties and 
uncontrollable long term stochastic effects. At the same time, a tumor can grow 
according to its initial conditions. 
 

2. Mathematical Model 
 
Dedicated studies have shown that cancer cells are capable to adapt and, 

consequently, survive. Cancer cells can change their metabolism, from an 
aerobic metabolism to an anaerobic one (Liu et al., 2007; Brahimi-Horn and 
Pouyssegur, 2007), therefore being able to survive in hypoxic media. Research 
has shown that the tissue encompassing a tumor is oxygen, nutrient and glucose 
deficient, and is generally characterized by a low pH (Witz and Levy-
Nissenbaum, 2006; Cuvier et al., 1997). 

Taking the above into consideration, we propose a one-dimensional 
partial differential equations nonlinear system with the purpose of illustrating 
tumor growth.  

1

2

22

2

3 42

( )

( )m

c

f k m f
t
m md k c f m
t x
c cd k fm k c
t x

∂
= −

∂

∂ ∂
= + − −

∂ ∂

∂ ∂
= + −

∂ ∂

    (1) 

 
Such a system includes three diffusion equations with nonlinear terms. 

They are likely to sustain a space domain Q (tissue area) with favorable primary 
conditions for each variable. The oxygen and matrix degrading enzymes 
(MDEs) do not change in the tissue. Consequently, no-flux boundary conditions 
will be considered on ∂Ω, the boundary of Ω. The scale domain is the unit 
interval [0, 1] in one space dimension. According to our opinion, a cluster of 
cells initially occurs the moment the tumor gathers around x = 0. 

 
2( , 0) exp( )m x xε= −                                                (2) 

 
At the same time, the primary MDE concentration profile is 

proportional to the initial tumor cell density, according to 
)exp()0,( 2xxm ε−= where ε  is a positive constant. The surrounding tissue 

is entirely altered by the tumor itself, in the absence of oxygen (f(x, 0) = 0, 
c(x, 0) = 0).   

min max( , ) ( , )m x t m x t=                                             (3) 
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The periodic boundary conditions for the matrix degradative enzymes in 
all tumor invasion stages as well as in metastasis) should be considered 
periodically.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 

Fig. 1 – Density and 3D plot of the solution of Eq. (1) for (a) macromolecules  
and non-cellular material complex mix (MM) concentration f(x, t); 
 (b) MDE concentration m(x, t); (c) oxygen concentration c(x, t). 

a 

b 
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Our tests have shown the following results via PC routines for non-
linear PDEs in Wolfram Mathematica. Parameter values: k1 = 0.3, dm = 0.0005, 
k2 = 26.5, dc = 0.5, k3 = 0.5, k4 = 1 and ε = 10 (see the relationship with constant 
parameters of the system in the previous section). Figs. 1a-c exhibit the way in 
which fields f, m and c depend on space coordinate x as well as on time 
coordinate t, according to parametric and surface image. 

Consequently, we have obtained: i) fields f(x, t) and m(x, t) are similarly 
dependent on coordinates x and t, as a result of the direct relationship between f 
(MM concentration) and m (MDE concentration). MM concentration alters the 
MDE one; ii) tumors are made up of two states, the proliferating state, (P) and 
the quiescent, or non-proliferating one, (Q). This is a consequence of split fields 
f(x, t) and m(x, t). Tumor cells migrate between classes P and Q.  

We have used the space-time system of PDE rate, to which Ivancevic’s 
et al. simplified normalized time dependent derivative model was attached. Our 
model resembles the original AC pattern.  

Our research reveals that fields f(x, t) and m(x, t) are both dependent on 
coordinates x and t. The two splitting fields certify that any tumor has two 
states: the proliferating (P) state and the quiescent (or non-proliferating) (Q) 
one. As long as there is a parameter variation, tumors can migrate from one 
state to another.  

In Figs. 2a-c we can observe a travelling wave mechanism for tumor 
growth (Perumpanani et al., 1999; Marchant et al., 2001). 

Now, if we significantly decrease the values of k4 and k2 (i.e., the 
diffusion from the surface, δ, and the number of tumor cells,γ) in Eq. (1) we can 
observe a bifurcation in the f(x, t) field, for a reduced k1 (i.e., proliferation/non-
proliferation factor, α) (see Figs. 3a-c). The presence of both states (P and Q) 
implies the fact that the “medium” behaves like a bi-steady system (see the 
active media of lasers). 

Because we are interested in waves travelling from the left of the 
domain to its right, we can define a traveling coordinate ζ = x − ςt, where ς > 0 
and we will get: 

( ) ( ) ( ) ( ) ( ) ( ), ,  , ,  ,F f x t M m x t C c x tζ ζ ζ= = =   (4) 

Let us note that we have assigned the same wave velocity ς to each 
variable, according to numerical simulations. By substituting F, M and C into 
the system of Eqs. (1) we can obtain the travelling wave system of equations: 
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Fig. 2 ‒ Plot of the solution of Eq. (1) for (a) MM concentration f(x,t); (b) MDE 
concentration m(x,t); (c) oxygen concentration c(x,t) for different time values 

(t = 10-30). We can highlight here the presence of a travelling wave. 
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Fig. 3 ‒ Density plot of the solution of Eq. (1) for (a) MM concentration f(x,t); (b) MDE 
concentration m(x,t); (c) oxygen concentration c(x,t) for low gamma and delta, and 

decreased value of k1 (proliferating/non-proliferating factor) shows a bifurcation 
occurrence in the evolution of f(x,t). 

 
We want to employ the phase-space methods and therefore we will 

formulate the system of Eqs. (5) as a dynamical system in ℜ5. In particular, by 
defining some new variables 1 1/ ,    /M dM d C dC dζ ζ= =  the system of Eqs. (5) 
can be formulated as: 

a 

b 

c 
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Because the wave velocity ς is unknown, system (6) can be approached 

as a nonlinear eigenvalue problem. Some analytical methods can be found for 
estimating ς in this context. However, the numerical solutions of Eqs. (6) easily 
yield a value of ς ≈ 240. We will therefore use this numerical estimate for ς  to 
fix the wave velocity at the constant (normalized) value of 240 and thus take ς 
as a fixed parameter. 

We can find the steady states of system (6) by solving equation f(x)= 0. 
Taking into account the scope of a travelling-wave analysis, the previous 
numerical simulations indicate that a heteroclinic connection between x±0 and x1 

(the trivial solution) should be identified, where (substituting the values of the 
constants k1- k4 from the previous section): 
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We are now seeking an orbit xcon(ζ) of (6) that satisfies: 
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of the vector field f at equilibria x±0 and x1. We are now aiming to determine the 
spectrum of the Jacobian matrices Df(x±0) and Df(x1). There are three real and 
two complex conjugate eigenvalues of Df(x0) (we kept only the positive of the 
two x±0 steady states, since we got the same eigenvalues for both Df(x±0)). 
Among the real ones, one is positive and two are negative, with the positive 
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eigenvalue leading to a three-dimensional unstable manifold Wu(x0). There are 
five real eigenvalues of Df(x1), two positive and three negative, with the negative 
ones leading to a three-dimensional stable manifold Ws(x1). Let us note that  
 

( )( ) ( )( ) 1dimdimdim 510 +ℜ=+ xx su WW   (10) 
 

Eq. (10) shows that Wu(x0) and Ws(x1) probably intersect transversally 
along a one-dimensional curve in the five-dimensional phase-space. In this case 
the curve would define a heteroclinic connection. 

If from the first Eq. (5) we separate M to obtain  
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the system of Eqs. (5) can be reduced to 
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3. Results 

 
The numerical results were obtained in Wolfram Mathematica by 

employing computational routines for solving non-linear PDEs.  
Fig. 4a shows the dependence of the field F (the MM concentration) on 

the travelling coordinate ζ. We want to highlight here an overall increase of F 
with the increase of ζ and moreover, an increase of the amplitude of F with the 
decrease of the “pseudo-period” of ζ. The amplitude dependence of the 
“pseudo-period” shows us that we are dealing with a strongly nonlinear system, 
characterized by multiple stable and/or unstable states. 

 

 

a 
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Fig. 4 ‒ Plot of the solution (12) for (a) MM concentration F(ζ) and (b) oxygen 
concentration C(ζ). We can see Shapiro steps occurring in the oxygen concentration 

dependence on the travelling coordinate ζ. 
 

4. Conclusions 
 
In Fig. 4b we show the dependence of the field C (oxygen 

concentration) on the coordinate ζ. An increase of C with the increase of ζ can 
be observed and, moreover, an interesting increase in Shapiro steps can be 
detected in the dynamics of this field. 

These dependences are useful in practical applications because they 
offer important information in controlling and limiting the tumor growth 
dynamics.  

The behaviors presented above (especially the presence of Shapiro 
steps) specifies the fact that the “media” signals the presence of coherence (it 
can be considered as an active media like lasers) 
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PROCEDURI OPERAȚIONALE ÎN DINAMICILE 
 SISTEMELOR COMPLEXE 

 
(Rezumat) 

 
În prezenta lucrare se propune un nou model de creștere tumorală, bazat pe cel 

original Anderson-Chaplain, la care s-a atașat atractorul de timp tip „fluture” al lui 
Ivancevic. Astfel, comportamentul haotic oferă o perspectivă mai realistă asupra 
creșterii tumorale, cu incertitudini și efecte stocastice pe termen lung. 

 


